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The one-layer reduced gravity (or ‘shallow water ’) equations in the f-plane have 
solutions such that the active layer is horizontally bounded by an ellipse that rotates 
steadily. In  a frame where the height contours are stationary, fluid particles move 
along similar ellipses with the same revolution period. Both motions (translation 
along an elliptical path and precession of that orbit) are anticyclonic and their 
frequencies are not independent; a Rossby number (R,) based on the combination 
of both of them is bounded by unity. These solutions may be taken, with some 
optimism, as a model of ocean warm eddies; their stability is studied here for all values 
of R, and of the ellipse eccentricity (these two parameters determine uniquely the 
properties of the solution). 

Sufficient stability conditions are derived from the integrals of motion; f-plane 
flows that satisfy them must be either axisymmetric or parallel. For the model vortex, 
the circular case simply corresponds to a solid-body rotation, and is found to be stable 
to finite-amplitude perturbations for all values of R,. This includes R, > t ,  which 
implies an anticyclonic absolute vorticity . 

The stability of the truly elliptical cases are studied in the normal modes sense. 
The height perturbation is an n-order polynomial of the horizontal coordinates; the 
cases for 0 < n < 6 are analysed, for all possible values of the Rossby number and 
of the eccentricity. All eddies are stable to perturbations with n < 2. (A property 
of the shallow-water equations, probably related to the last result, is that a general 
finite-amplitude n-order field is an exact nonlinear solution for n < 2.) Many 
vortices - noticeably the more eccentric ones - are unstable to perturbations with 
n 2 3 ; growth rates are O(Rtf) where f is the Coriolis parameter. 

1. Introduction 
Anticyclonic eddies are a conspicuous feature in the oceans, important for both the 

physics (see, for instance, the special section of J. Ueophys. Res. 90, C5, 1985) and 
the biology (e.g. Yentsch & Phinney 1985). Their Rossby number, defined as the 
absolute ratio of the particle swirl speed to the Coriolis parameter, is typically equal 
to one fourth (Joyce 1984 ; McWilliams 1985), a moderate value. However, Houghton, 
Olson & Celone (1986) observed a much more rapidly spinning eddy, with a Rossby 
number equal to three fourths. This value is so large that the absolute vorticity is 
anticyclonic ; for the simple eddy model used in this work, the Rossby-number upper 
limit is unity. 

Most theoretical models of ocean vortices assume an axisymmetric shape, for the 
good reason that it is mathematically the easiest to deal with. Indeed, observed eddies 
are usually quite circular. Joyce et al. (1985), for instance, report on a Gulf Stream 
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warm-core ring with a minor to major axis ratio equal to three fourths. Is there a 
dynamical reason why observed ocean eddies are almost circular ? There does not 
seem to be any a priori cause; after all many galaxies are elliptical. (In fact, there 
could be very eccentric eddies out there, which happen not to have been observed.) 
Instability could be a good reason for symmetry preference. For instance, a Kirchhoff s 
vortex is unstable if the aspect ratio is smaller than one third (Love 1893). Griffiths 
& Pearce (1985) observed a slightly elongated warm eddy with two spiral arms, which 
was clearly unstable. This work is devoted to the problem of the stability of an 
elliptical eddy solution of the shallow-water equation (Cushman-Roisin, Heil & Nof 
1985), for which, unlike the case of Kirchhoff s vortex, rotation is important. 

The model used has, admittedly, a very simple vertical structure: just one active 
layer. It was chosen because of its mathematical simplicity. The active-layer 
thickness is proportional to the pressure; since the latter has a maximum for an 
anticyclonic eddy, the former decreases away from the centre, and the solution is 
bounded by a zero thickness line. The eddy is, then, limited by a front and therefore 
the quasi-geostrophic theory cannot be used. Both the basic flow and the perturbation 
are represented here by polynomials of horizontal position, inside a finite domain; 
these are quite manageable functions. If the eddy were cyclonic, the thickness could 
increase away from the centre and the mathematics of the problem would be more 
cumbersome: this could explain why there is much more literature on anticyclonic 
than on cyclonic vortices. 

The model is formulated in the so called f-plane ; the 8-term, due to the geoid’s 
curvature, is not considered here. The main effect of /3 on the eddies is a westward 
migration at a very slow velocity: of the order of a Rossby-wave phase speed (Nof 
1981, 1982; Killworth 1983). 

Pressure and velocity fields of the model eddy studied here are seen, in thef-plane, 
to rotate solidly in the same sense, anticyclonic, but at a slower speed than the fluid 
particles. Section 2 is devoted to the model equations in a frame where the vortex 
is seen as steady ; the conservation laws are discussed and used to find general stability 
conditions for finite-amplitude perturbations to any steady nonlinear solution. The 
elliptical vortex is described in $3, and its stability is studied in the following section. 
The model eddy is quite simple, and its stability is studied in the whole range of 
parameter space, i.e. it  is not limited to either small Rossby numbers or small 
eccentricities. This work finds its coordinates in $ 5 :  the discussion on the generality 
of both the model and the results, and on the analogy with other problems is held 
until this section with the intention of making the presentation clearer. A summary 
is presented in $6 and the mathematical derivations are confined to two Appendices. 

2. Model equations and conservation laws 

in the f-plane : 
I start by writing the momentum equations for the so-called shallow-water model 

(1) 
Dv 
Dt 

Here, 
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denotes the material derivative, u and v are velocity components in the x-  and 
y-directions respectively, p is the pressure, and f is the Coriolis parameter, which is 
taken as constant. The model represents a mass of homogeneous fluid rotating with 
a vertical angular velocity equal to g. However, the centrifugal force does not appear 
in the f-plane equations because it is balanced by a fraction of the gravitational 
attraction, effectively tilting the local vertical and changing the local gravity. 

Equations (1) are complemented by that for mass conservation: 

ah a(hu) a(hv) -+- +- = 0, 
at ax ay 

where the total depth h is related to p by 

p = 9% 

with g’ a ‘reduced ’ gravity. Actually, in this one-layer model h need not be introduced 
since it can be replaced in (2) by p throughout; the actual value of g’ is irrelevant 
(more on this in $ 5 ) .  Moreover, absolute lengthscales are also unimportant, since (1) 
and (2) are invariant, in the f-plane, under the transformation (2,  y)+A(z, y), 
(u, v)+A(u, v), and p+A2p, with arbitrary A. 

Next (and for reasons that will become clear in the following section) I transform 
variables and equations to a frame with an anticyclonic rotation 52 relative to the 
f-plane, i.e. with a rotation g- 52 relative to the fixed stars, where f 52 > 0. Variables 
in this infrarotating frame, which I call the f* plane, are distinguished by an asterisk 
subscript, unless they take the same value as they do in the f-plane (like, for instance, 
the height field). Position and velocity transform as 

and 

[x* + iy,] = exp (i52t) [ x  + iy] 

[u* + iv,] = exp (i52t) [ (u - Qy) + i(v + Qx)] ; 
(3) 

(4 1 
this is, of course, the time derivative of (3). The transformed momentum equations 
are found to be 

Du* aP --f*v*+-= -Qe*x*, 
Dt ax* 

-+f*u*+-=-LP *Y*, Dv* aP 
Dt aY* 

where 

Notice that the Coriolis parameter has been changed so that 

f* = f-252. 

The centripetal forcing on the right-hand side of (5 )  comes from the difference of the 
centrifugal accelerations between the f-plane and the f* plane; thus 

5 2 2 - 1  2 * - ($) -(if*)2 = Q(f-52). 
Finally, the mass conservation equation is imply 

The next step is finding the integrals of motion of the fa plane equations, (5)-(6), 
and then using them to derive sufficient stability conditions for any steady flow (in 
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the f* plane) in the presence of finite-amplitude perturbations. It is important to 
recall the relationship between those conservation laws and the symmetries of the 
problem (Ripa 1981; Salmon 1982); this connection will be used to determine the 
number and type of integrals of motion and to question the usefulness of general 
stability conditions. 

Thef, plane equations, written in the formalism of Hamilton's principle (see Ripa 
1981), are invariant under: (i) a general change of particle labels, related to 
conservation of potential vorticity; (ii) a shift in the origin of time, related to 
conservation of energy; and (iii) an infinitesimal rotation of the axes (z*, y,), related 
to conservation of angular momentum. 

Of course, the f-plane equations are also invariant under translations in both 
horizontal directions, which results in the conservation of linear momenta; this 
symmetry is broken in the f, plane by the presence of the harmonic potential 
$2",x$ + y",. These momenta, equal to the integrals of h(u-fy) and h(v + fx) in the 
f-plane, have expressions in the f, plane in which time appears explicitly, through 
transformations (3) and (4) : I am not interested here in this kind of integral of motion, 
because they do not seem to be useful for obtaining stability conditions with Arnol'd's 
method. 

Ball ( 1963) studied the integrals of motion for Laplace tidal equations in a rigid basin 
with the shape of a rotating paraboloid, which-as will be shown in $5-are 
mathematically equivalent to the f* plane equations : both the energy and angular 
momentum of the centre of mass are also conserved, as well as another quantity C, 
related to the inertia moment and its rate of change. I have not been able to use these 
extra constants of motion in the search for stability conditions. In fact, Ball showed 
that the motion relative to the centre of mass is decoupled from that of the centre 
itself, and the last constant, C, may not be independent of the others (see Young 
1987). 

I shall now concentrate on the potential vorticity and the regular energy and 
angular momentum (Ripa 1981 ; Salmon 1982). The potential vorticity has the form 

q = Elh3 
where 

is the absolute vorticity. From the law of conservation of the potential vorticity of 
each fluid element, Dq/Dt = 0, together with that of mass, (6), follows the family of 
integrals of motion 

J[u,,v,,p] = s jdzdyhF(q)  = const, 

where F(q) is an arbitrary function. Total energy and vertical angular momentum 
are also conserved, viz. 

E[u,, v*, p] = 1 1 dx dy h[u; + v: + p  +$2z(z$ +&)I = const, 

and A[u,, v*, p] = s s dx dy h[z, v* - y, u, + g,(zi + y33 = const. 

Energy and angular momentum in the f-plane are linear combinations of these 
integrals in thef, plane (plus a trivially conserved term) and vice versa. 
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Let there be some steady solution of the f, plane equations, viz. u, = uo(x , , y+) ,  
v, = vo(x*, y,), p = po(z, ,  y,): is i t  possible to say anything a priori about its 
stability ? I shall use the conservation laws derived so far in order to obtain sufficient 
stability conditions, i.e. inequalities that, if satisfied by [uo, vo, pol, writing 

u* = ~o("*,Y*)+Su*(x*,y*, t )  

and similarly for v, and p, then some measure of [Su,, Sv,, Sp] is bounded forever. 
This is done using the pseudoenergy defined by 

Ep[u*,v*,Pl= E[u*,v* ,Pl -J[u*,~ , ,Pl ,  

which is clearly conserved, because so are both E and J, the latter for any form of 
P(q). This arbitrary function of the potential vorticity is chosen so that the 
lowest-order contribution (namely, the terms linear in Su,, etc.) to 

SE, E p [ u o + S ~ * ,  . . . I -  EP[uO, ...I 
vanishes identically (the details are given in Appendix A). The stability conditions 
are those that assure that the next-order contribution, the terms quadratic in the 
perturbation, is positive definite. Recall that SE, is a constant of motion ; if it is also 
a sign definite and quadratic functional of [Su,, Sv,, Sp], then the latter cannot grow 
beyond a limit in any region: the basic flow [uo, vo, pol is said to be stable in the 
Lyapunov sense. This method of finding stability conditions is a generalization of that 
of Arnol'd (1965); its beauty stems from the derivation based on the integrals of 
motion: it does not involve the 'normal mode equations' (as is the caae in $4) and 
by the same token its results are valid for finite (albeit, small) perturbations, not 
necessarily infinitesimal ones. 

The stability conditions derived from SE, > 0 seem to be quite general, since they 
apply to any steady solution of the f, plane equations. However, their generality is 
quite ephemeral: I shall show next that any flow that satisfies them must be 
axisymmetric. Andrews (1984) first proved a similar result in a Merent  model 
(quasi-geostrophic flow in the p-plane). For symmetric flows, on the other hand there 
is another, independent, integral of motion quadratic in the perturbation, which 
allows for the construction of more powerful stability conditions. 

The argument is based on symmetry considerations and proceeds as follows : 
The f, plane equations (and, therefore, their constants of motion) are invariant 
under a fixed rotation in the (z,,y,)-plane, x,+(x* cosa-y, sina) and 
y, + (y, cos a + x ,  sin a). A particular perturbation may be defined through an 
infinitesimal rotation of the basic flow, i.e. uo(z*, y,) + Su,(z,, y,) = uo(x,  - y* Sa, 
y, + z,Sa), and similarly for Sv, and Sp. A rotated solution must be also a solution ; 
generally a different one but with the same values for the integrals of motion. Thus, 
(i) SE, = 0, because E,  is invariant under rotations, but (ii) if [uo, vo,po] satisfies the 
stability conditions, then SE, should be a positive definite functional of [Su,, Sv,, Sp] ; 
therefore (iii) [Su,,Sv,,6p] must vanish identically, i.e. the flow must be axisym- 
metric. Namely, for any steady flow that satisfies the atability conditions, (A3) 
and (A 4), necessarily 

y* W(r) ,  vo = E!E W r ) ,  Po = po(r), U o = - - r  r 

where r* = xi+ y i .  (The momentum balance yields dpo/dr =f, W+ WB/r-G?: r and 
the potential vorticity is given by qo = [f, +dW/dr+ W / r ] / h O . )  

But if, and only if, the flow is symmetric then a pseudo-angular momentum, 
12 FLM 183 
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A,[u*, w*,p], can be defined in a similar way to the pseudoenergy : replacing E[ 3 by 
A[ ] and using another P(q). For a non-symmetric flow there is no function F(q) such 
that the terms in A, linear in [Sue, . . . ]  vanish. 

With both E, and A, as independent integrals of motion (and quadratic, to lowest 
order, in the perturbation) a more powerful stability condition can be defined, viz. 
if there is any value of a parameter CT such that 

for a small perturbation (but with an arbitrary shape), then the basic flow is stable 
in the Lyapunov sense. The conditions for this to happen are found to be 
(u, + + (w, - CTZ,)~ < po and (w, - ax,) (aqo/ax*) 3 0, or equivalently to the last 
one, (u,+uy,) (aqo/ay*) Q 0. Since the flow is axisymmetric, these equations can be 
rewritten as 

SE,-USA, > 0 

( W -  C T q  < p ,  (7) 

(8) and 
for some CT. 

Needless to say, a steady axisymmetric solution in thef, plane is also steady and 
axisymmetric in the f-plane; conditions (7) and (8) also apply to the latter case. 
Gordin (1984) found four stability conditions (not a family of couples as here) for the 
f-plane case, allowing for a radial velocity. I shall argue, at the end of $5,  that there 
is no flow that satisfies Gordin’s equations. 

It is fundamental to distinguish between stable flows and flows that satisfy the 
stability condition; the latter constitute a subset of the former. There could be 
asymmetric stable flows ; Andrews’ theorem says that their stability cannot be proved 
using the integrals of motion. 

(W-ar)- %lo 2 0 
ar 

3. The elliptical vortex solution 
Here, I shall describe a steady solution of the f* plane equations that represents 

an elongated eddy. In thef-plane, then, the vortex has an anticyclonic rotation 51. 
The form of the basic fields are (u*, w,,p) = (u,, w,,p,) with 

a 
uo = p* Y*, 

b 
a 

21, = --sz, x,, (9) 

where a and b are the minor and major semiaxes, respectively, and the sign of 51, 
is equal to that off*. These equations are valid inside the ellipse p, = 0, since p ,  
cannot be negative (outside that ellipse there is no fluid of the active layer). This 
solution was first presented by Cushman-Roisin et al. (1985), in f-plane variables, a 
formula that can be obtained from (9) using the coordinate transformation (3) and 
(4). 

The description of the solution is clearer in the f,, plane than in thef-plane. Each 
steady solution of the form (9) is fully characterized by two non-dimensional 
parameters: the ratio of the minor to the major semiaxes with range 

a 
O < - Q i ,  

b 
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and the ratio of the rotation rate of the eddy to the Coriolis parameter, with values 

(11) 
52 

in the range 
0 < - < ; .  

f 
Any case with 52 > 9 is equivalent to that with 52+f-0 and merely results in an 
opposite sign off*. If 0,/f* is used as the second parameter, instead of B/f, then 
the range is between 0 and co. The position, orientation, and absolute size of the 
ellipse are clearly irrelevant degrees of freedom. 

There follows next a discussion of the physical properties of this solution. The 
absolute vorticity is uniform, with value 

5, =f*-(;+;)Q*. 

The divergence of the horizontal velocity field vanishes because the flow is in exactly 
geostrophic balance, 

aP 
aY* ax* 

f* u* = -- + ,  f*.* =-7 

in the f* plane, but not strictly in the f-plane (as shown below). Using this balance 
in the momentum equations (5 )  it follows that particle accelerations are produced 
solely by the harmonic potential !j0:(x2, + y",, viz. 

-- - -QZ*y,. 
Du* --0:x*, -- Dv, 
Dt Dt 

(The f-plane balances are more complicated, viz. (f -252) (u-52y) = -ap/ay and 
(f-252) (v+52z) = ap/ax, i.e. there is no geostrophic balance (unless 0 / f + O ) .  This, 
in turn, implies Du/Dt = 252v - Q(f- 252) x and Dv/Dt = - 20u- 0(f- 252) y.) 

The particle trajectories in the f* plane are along the ellipses p, = const., viz. 

x* = apcos(Q*t+S), 

y* = -bp sin(SZ,t+S), 

where p, S are two Lagrangian labels (0 < p < 1,0 < S < 2 x ) .  Thus 2x/10,1 is the 
revolution period of the particles in their elliptical paths, the only motion seen in the 
f. plane, whereas 2x/lSZI is the precession period of those orbits, as seen in the f-plane ; 
both rotations are anticyclonic and the latter is the slowest. The Rossby number is 
defined as 

0+0* R, = -. 
f 

Figure 1 shows examples of particle orbits, both in the f* plane and thef-plane. 

that are independent of a/b. The deformation radius R is defined by 
Figure 2 shows the properties of the solution that are only a function of Q/f, i.e. 

with the angle brackets indicating a horizontal average ; equivalent expressions are 
R2 = max (p,)/2f2 = ab(52, f*/4f2) = W R ,  (1 - R,). 

The absolute vorticity 5, of any solution in the whole parameter domain, defined 
by (10) and (ll),  is shown in figure 3. Notice that i t  is anticyclonic, 5, f < 0, in the 
unshaded region. 

12-2 
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(4 

R = 0 . o y  

f. Plane f-plane 

f. Plane f-plane 

FIQURE 1 (a, b) .  For caption see facing page. 

4. Stability of the elliptical vortex 
I shall now address the problem of the stability of any vortex of the form (9), i.e. 

for any point in the rectangle of parameter space (0 < 52/f < !j,O < a/b 6 1). 
The stability conditions derived in $2 from observation laws can only be applied 

to the circular case, a = b, the top boundary of the parameter domain depicted in 
figure 3. This case is particularly simple: solid-body rotation both in the f, plane 
(u, = 52*y,,vo = -52,x,) and the f-plane (u = (Q+SZ,)y,v = -(a+Q,)x), and 
p ,  = $2*f,(a2-r2).  It is easily found to be stable to finite-amplitude perturbations 
using CT = -52, in (7) and (8); Killworth (1983) has already proved its stability to 
infinitesimal perturbations. Notice that this includes circular vortices with anticy- 
clonic absolute vorticity, ft, < 0, which corresponds to R, > t ,  i.e. to 
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f. Plane $plane 

RQURE 1. Particle trajectory for an elliptical eddy. In the f, plane (left) the orbit is an ellipse 
completed in a time 2a/lB,I. The eddy, and also the orbit, is men to precede with an angular velocity 
B in the f-plane (right). The aapect ratio a/b equals one-half and the elapsed time equals three f+ 
plane periods. (a) B/f = 0.01 which implies B,/f = 0.099 and a Rossby number R, = 0.109. ( b )  
B/f = 0.05 : B, f = 0.22 and It, = 0.27. (c )  Q/f = 0.1 : Q,/f = 0.3 and R, = 0.4. 

0 0.1 0.2 0.3 0.4 0.5 
W f  

RQTJRE 2. Rossby number R,, Coriolis parameter and revolution frequency in the transformed 
frame, f, and B,, and the ratio of the deformation radius to the mean radius of the ellipse, R/(ab)i. 
These parameters are only a function of the eddy rotation speed S/f, i.e. they are independent of 
the aspect ratio alb. 
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Qlf 
RCWRE 3. Absolute vorticity &, of the elliptical eddy (normalized by the Coriolis parameterf) aa 

a function of the ratio of the minor and major axes a/b, and the rotation rate B of the ellipse. 

a/f > f (2-  1/2) or sl,/f* > +. (Cushman-Roisin et al. 1985 incorrectly argued, 
apriori, that these eddies were ‘inertially unstable’, thereby justifying the choice of 
the smallest of the two values of Ro for a given size (ab)f/R.) 

Integrals of motion cannot be used to prove the stability of truly elliptical case 
(a += b). Instead, consider the more restricted structure 

u* = uo + e Re [ U(x,, y*) exp ( - id) ]  + O(e2), 

rn e+O, and similarly for v* and p ,  with complex amplitudes V and P. Substituting 
in ( 5 )  and (6) and linearizing in e results in the equations 

(inside the ellipse Po = O ) ,  

a ( P 0 w  a ( P 0 v -  L(P) +- +-- 

a( 1 a( 1 
3% OaY* 

ax* aY* 
where 

L( ) = -iw+uo-+v - 

The existence of an eigensolution with Im (w) > 0 implies instability of the basic flow 

Since the circular case is stable in the Lyapunov sense, it must also be so in the 
softer normal modes sense: the eigenvalues of (12) must be real for a = b. In  fact, 
for this case, the eigensolutions are those of the free oscillations of the surface in a 
rotating paraboloid (Miles & Ball 1963) Doppler-shifted by the basic flow. The 

(uo, vo, Po) .  
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eigenfunctions can be written as either a polynomial of the coordinates x* and y*, 
or as a polynomial of the distance to the centre r times a single harmonic exponential 
in the azimuthal angle. (The latter is the equivalent of the exp (ikx)-dependence for 
the well-known problem of parallel-flow stability.) The eigenvalues, real for any value 
of 0/f, can be calculated as the roots of 

w'2 + (n - 2s) O*f* 6 0  = [n + 2s(n- s)] 0*f* + g, 
w ' 

wherew'=w+(n-2s)Sd,,andwheren=0,1,2 ,..., ands=O, l ,  ..., n. 
On the other hand, the limit of very eccentric eddies, a/b+O but Q(b/a)*+const., 

corresponds to a parallel flow with uniform shear, which has been shown to be always 
unstable by Griffiths, Killworth & Stern (1982). Then, circular eddies are robustly 
stable and very elliptical ones are unstable; it looks, a priori, as if there is a minimum 
value of b/a for each S/j  for instability. 

For the elliptical case, and given the (x+, ye)-dependence of the basic flow, (9) ,  the 
eigensolution of (12) is written as a polynomial of the coordinates (inside the ellipse 
p,, = 0). Namely, for a certain integer n, 

where the sum is over all the values (i,j) such that i +j = n, n- 2,  . . . , etc., all the way 
down to i+ j  = 1 or 0, depending on the panty of n. U and T.7 have similar structures, 
but the sum runs over i +j = n - 1, n- 3, . . . , etc. I call this an n-degrees polynomial 
solution. 

The equations for the highest-order coefficients (i+j = n for P and i+ j  = n -  1 
for both U and V )  are decoupled from those of the lower-order coefficients. Then, the 
eigenvalues w are obtained as those of a (3n+ 1)  x (3n+ 1) real matrix. The details 
are given in Appendix B ; the main results, particularly those concerning the vortex 
instability, follow. 

The eddy is found to be stable to polynomial perturbations with degree n not 
greater than two. Moreover, the eigenvalues are exactly given by 

The n = 0 solution corresponds to change of the vortex size, and the n = 1 ones to 
a displacement and to inertial oscillations of the centre of mas (Ball 1963). 

Some elliptical eddies are unstable to polynomial perturbations with a degree n 
larger than or equal to three. Figure 4 shows the maximum growth rate, Im ( w )  
(normalized by 0) corresponding to n = 3. Notice that Im (w)  = O(0) ; in other words, 

Im ( w )  = O(RXf). 

The whole parameter space is presented in this figure; for each value of 0/f there 
is a threshold eccentricity b/a for instability. For instance, for a/f -to instability to 
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FIQURE 4. Maximum growth rate of an infinitesimal perturbation with n = 3, i.e. such that the 
perturbation pressure is a cubic polynomial of (z*, ye), and the perturbation velocities are quadratic 
polynomials of (z*, ye). 

cubic perturbations requires a/b < (f)i x 0.53, whereas for 51 = 1/2--s (with E + O )  
it is necessary that a/b < 9. In  general, instability requires 

15y + 9(9y2 + 56)i < 56C, 

where 

and c = +(;+:). 
Growing perturbations, Im (w) > 0, have Re (0) = 0. 

The maximum growth rate for perturbations with the next degree, n = 4, is shown 
in figure 5. In the lower part of the figure (the more eccentric eddies), there is an 
instability region similar to that of the n = 3 case ; the growth rates are typically twice 
as large, though. The neutral stability curve for this region, Im (w) = O +  and 
Re (0) = 0, is given by 

which requires an eccentricity a/b < 0.344100. In this region, as well as in the lower 
part of figure 4, Im (w) > 0 and Re ( w )  = 0, but not so in the tongue of instability 
seen to the right of the figure: there, for each value of Im (0) > 0, there are two 
eigensolutions with opposite and non-vanishing values of Re (0). 

In  figure 4 and subsequent figures regions with a single fastest growing perturba- 
tion, with purely imaginary frequency, are denoted by a letter R, and regions with 
two eigensolutions with the same (positive) value of Im(w) but opposite and 
non-vanishing value of Re (w), are denoted by G. 

~2(16C2-12)+y(17C-99CS)+1 = 0, 
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FIQURE 5. As in figure 4 for n = 4. 

Cushman-Roisin (19863) studied the stability of elliptical eddies of the form (9), 
in the framework of the ‘frontal geostrophic dynamics approximation ’ (Cushman- 
Roisin 1986a). This approximation is valid in the limit of large and slowly rotating 
eddies, Ro+O or Q/f+O: i.e. the leftmost boundary in figures 4 and 5. Cush an- 
Roisin’s (19863) results coincide with the limit of those of this paper as Qf-+O, 
keeping w / Q  fixed. This seems not to be so in the case of figure5, because the 
frontal-dynamics equations predict Im (w/Q)  = 0 for even values of n. There is, 
however, no contradiction: the results of figure 5 are reproduced in figure 6 but using 
a logarithmic scale of the abscissa in order to expand the low-Qlfregion. Even though 
Im ( w / Q )  strictly vanishes for Q/f = 0, it has significant non-zero values for very 
small Q/f. See, for instance the points along the line Q/f = 0.001, which corresponds 
to a very small Rossby number, approximately R, = 0.01: the growth rates are 
considerably large, viz. Im (w/Q)  > 1 for b/a > 5. .The neutral stability curve, 
Im ( w )  = O +  , in this limit is given by 

i.e. the threshold Rossby number for instability is very small. 
These significantly non-zero growth rates for very small values of the Rossby 

number and even values of the degree n represent an important warning about the 
practical validity of the frontal-geostrophic-dynamics approximation, which predicts 
stability. 

Maximum growth rates for n = 5 and 6 are shown in figures 7 and 8, respectively. 
The regions of instability for very eccentric eddies are similar to those of figures 4 
and 5, which correspond to n = 3 and 4, but the growth rates are larger. As n 
increases, there are more tongues of instability, to both type R and G perturbations, 
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FIGURE 6. As in figure 5, but with logarithmic scale for Q/f. Even though the growth rate strictly 
vanishes for Q/j = 0 (for even n),  it takes significant non-zero values for very small values of Q/j 
or the Rossby number (the latter parameter is shown aa the upper horizontal axis). 

that entrain in the zone of less eccentric vortices, the growth rates, Im(o),  are a 
fraction of 0. 

There seems to be a contradiction between the result that circular vortices are 
stable to finite-amplitude perturbations, and the tongue of instability in figure 7 
(n = 5 )  that touches the a = b line at a point. (I have an analytic expression for the 
boundary of this particular tongue: there may be others which similarly reach the 
a = b line but that are not resolved by our numerical method, because they become 
too sharp.) The apparent paradox is as follows: if there is an elliptical eddy with 
arbitrarily small eccentricity which is unstable, then the corresponding circular one 
cannot be stable to finite-amplitude perturbations (since one of them makes it 
elliptical and unstable). In  fact, the slightly eccentric vortex is found (through a linear 
calculation) to be unstable to infinitesimal perturbations : Amol’d’s theorem msures 
that, in a truly nonlinear calculation, disturbance cannot grow much, and so the 
eddy does stay close to its circular shape. 

5. Generality of the model 
It often happens that identical sets of equations are used to represent different 

physical models, through a redefinition of the meaning of variables, parameters and 
constants. This may or may not have some deep significance, but in any cam i t  is 
important to investigate the generality of the equations at least from a practical point 
of view to avoid duplicate mathematical work and to make use of results obtained 
by other authors in other physical contexts. This section is devoted to the discussion 
of the generality of the model employed in this work and of its results. 
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FIGURE 7. As in figure 4 for n = 5. The instability regions in the zones of less eccentric eddies are 
labelled R or a, depending on whether the perturbation has purely imaginary frequency, or there 
are two eigensolutions with opposite and non-vanishing values of Re ( w ) ,  for each Im (0). 
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in figure 4 for n = 6. The caption of figure 6 applies here to. 
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I start with the model equations in the f-plane, (1) and (2). These may be taken 
as Laplace tidal equations, in an ocean with a flat and horizontal, with p = gh. 
Alternatively, the active layer, with thickness h and density p,  may be sandwiched 
between upper and lower inert layers, with densities pu and pL; the equations hold 
with p = g’h, where g’ = g(pL-p) (p-pU)/p(pL-pu).  In  particular, it  could be that 
pu = 0 (free upper aurface) and/or pL+ 00 (flat level bottom). The point is that since 
the value of g’ is mathematically irrelevant, the same equations can be thought of 
as representing quite different physical models. 

Continuing with the three-layer idea, the upper and lower layers need not be 
at rest but could have uniform velocities uu and uL; the equations of motion are 
the same, with the addition of an advection by an average velocity field 
u = [@ -pu) pL uL + (pL-p) pu uu]/(pu -pL)  p.  The flows in the external layers act as 
a forcing on the active one through interface tilting. Equivalently, the advection 
velocity u may be thought of as a manifestation of a sloping flat bottom. In any case, 
one can easily ‘remove’ u through a Galilean transformation. This is one example 
of a simple topography being equivalent to a coordinate transformation, 

Consider now the model equations in the f,, plane, ( 5 )  and (6), namely, those 
obtained through a spinning of coordinates. These equations are found to be the same 
as the f-plane Laplace tidal equations in a basin with the shape of a revolution 
paraboloid: removing all the asterisk subscripts and writingp = gh = g(H+r]) ,  where 
gH = gHo -$2”,xa + ya), with gHo = const. This is another case of a simple topography 
being equivalent to a transformation of coordinates (see also Ball 1965). Previous 
research on the revolution paraboloid is related to the present work: I have already 
shown how the results of Miles & Ball (1963) relate to the circulate-eddy case; Thacker 
(1981) looked at finite-amplitude perturbations of this system such that the pressure 
is a quadratic polynomial of the coordinates and the velocities are linear functions 
of them. In order to be a bit more general, let me define an n-degree field as one such 
that the pressure is an n-order polynomial of the coordinates and both velocities are 
(n- 1)-degree ones (of course, as n-degree field in thef, plane is an n-degree field in 
thef-plane and vice versa). The +(n+ 1) (3n+2) coefficients are functions of time: the 
partial differential equations in the original variables are transformed into ordinary 
differential equations (ODE) for those coefficients. It is a simple matter of exponent 
book keeping to convince oneself that an n-degree field is a closed system (i.e. solutions 
of the system of ODES are exact nonlinear solutions of the partial ones) if and only 
if n is not greater than two. (For the b-plane case, no similar result holds, i.e. no 
finite-degree system is a closed one.) The elliptical eddy in (9) is a steady first-degree 
solution of the equations for the coefficients; Thacker (1981) found some time- 
dependent second-degree solutions. (Incidentally, these exact nonlinear solutions 
constitute a good test of numerical models of the shallow-water equations in a 
free-boundary domain.) Young (1987) used the integral properties of the system (Ball 
1963) to study the global motion of the second-degree field (the most general stable 
one). There may be some connection, which escapes my knowledge, between the fact 
that n-degree fields are closed only for n smaller or equal to two and the result of 
the preceding section that elliptical eddies are unstable (if at all) to n-degree 
perturbations with n greater than or equal to three. 

Finally I should stress the relationship between symmetries and conservation laws. 
Given a steady solution of the model equations, a pseudoenergy can be constructed 
to find sufficient conditions for stability to finite-amplitude perturbations. If the basic 
flow shares a symmetry with the system, though, a pseudomomentum can also be 
constructed, resulting in more powerful stability conditions (in fact, in a one- 
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parameter family of conditions). Even though the first stability conditions are in 
principle applicable to very general flows (not necessarily symmetric ones), any flow 
that satisfies them must be symmetric. This result was first found by Andrews (1984) 
for the case of quasi-geostrophic three-dimensional flow ; its generalization to other 
geophysical fluid systems (as done here) is trivial, given the connection between 
conservation laws and symmetries. (Andrews used i t  to argue that for a non-parallel 
flow to satisfy the stability conditions in the 8-plane there must be some topography 
that breaks zonal homogeneity.) 

The f-plane equations have three symmetries (in addition to time homogeneity) : 
(i) horizontal isotropy, (ii) 2-homogeneity, and (iii) y-homogeneity. It is easy to find 
general sufficient stability conditions for any flow that is steady in the f-plane using 
pseudoenergy conservation. For a one-layer model, for instance, those are (A 3) and 
(A 4), where (u,,, ...) is measured in thef-plane. Unfortunately, there is no flow that 
satisfies them because, according to Andrews’ theorem, it would have to be (i) 
axisymmetric, (ii) parallel to the x-axis, and (iii) parallel to the y-axis, at the same 
time, which is clearly impossible. This is different from saying that there are no stable 
flows (the circular vortices of 53 are an example of a steady and stable flow in thef- 
plane). Recall that the key point to obtain this theorem is that 2 and y do not appear 
explicitly in the pseudoenergy integral, from which the stability conditions were 
obtained. Now, suppose we retrict ourselves to flows parallel to the x-axis : then, and 
only then, there Is another integral of motion that can be used to obtain stronger 
stability conditions, the pseudomomentum along that axis. Andrews’ theorem cannot 
be applied to this integral because ‘y’  appears explicitly (the momentum per unit 
mass is equal to u- fy in thef-plane or to u- f 2/2/3 in the 8-plane) and thus it is not 
invariant under either rotations or translations along the y-axis (the stability 
conditions for the 8-plane one-layer model are discussed in Ripa 1983). Therefore i t  
is possible to find symmetric flows that in thef-plane satisfy the stability conditions; 
the coefficient that multiplies the pseudomomentum must be non-zero. It is not 
possible to find a flow in thef-plane (which has ‘too many ’ symmetries) that satisfies 
stability conditions derived from conservation of pseudoenergy alone (such as those 
of Gordin 1984): pseudomomentum conservation must also be used in order to get 
stable solutions. 

6. Summary 
The shallow-water equations transformed to a frame that rotates with anticyclonic 

angular velocity 0, relative to thef-plane, show two differences with the original ones : 
(i) the Coriolis parameter is smaller in magnitude, and (ii) there is a centripetal force 
of the form -sSfx, where x is the position vector and 0: = Saf-Q2 (f, 0, and 0, 
all have the same sign). This apparent harmonic forcing, produced by the transfor- 
mation coordinates, is similar to the real one experienced in a basin (in thef-plane 
or non-rotating) with the shape of a revolution paraboloid. 

The new equations have four integrals of motion independent of the centre-of-mass 
motion and in which time does not appear explicitly: mass, energy, angular 
momentum and the volume integral of an arbitrary function of potential vorticity; 
linear moments are not conserved because the harmonic potential breaks the 
symmetry of horizontal homogeneity. These conservation laws are used to find 
sufficient conditions of stability to finite-amplitude perturbations, applicable to any 
axisymmetric steady solution ; the stability of non-symmetric flows cannot be proved 
by this method. 
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One particular solution of the transformed equations has all particles traversing 
similar Lissajous ellipses, i.e. the orbit of a two-dimensional ideal pendulum, with 
aspect ratio a/b and period 2x/IsZ,I. Since elliptical orbits have a precession -52 
relative to the f-plane, the Rossby number is defined as R, = (sZ+sZ,)/f, and it is 
found to be limited by unity. The pressure and (modified) Coriolis forces balance. The 
global motion is that of an anticyclonic elliptical eddy. 

The stability of such eddy is studied in the whole parameter space, 1 2 a/b > 0 
and 1 > R, > 0 .  The circular case, a/b = 1, corresponds to a solid-body rotation and 
is found to be stable to finite-amplitude perturbations (Lyapunov sense) for all the 
values of R,, including the cases of anticyclonic absolute vorticities (R, > 4). The 
stability of the truly elliptical cases, a/b < 1, is studied by solving the normal mode 
equations, which apply to infinitesimal disturbances. The perturbation has the form 
of a polynomial of the horizontal coordinates with degree equal to n for the pressure 
and to (n- 1) for the velocities. The eddy is stable to perturbations with n < 3. Some 
eddies (notably, the more elliptical ones) are unstable to perturbations with n 2 3. 
The growth rate is of O(Q), which yields an e-folding time of a few inertial periods 
for moderate values of R,. For R,+O the results coincide with those that Cushman- 
Roisin (19863) found in the less general context of the ‘frontal geostrophic dynamics 
approximation’. For even values of n, however, that theory predicts zero growth rate 
(which, again, is the result of this work for R,+O) but significant values of the growth 
rate are found to Rossby numbers as small as 0.01: the results of the frontal- 
geostrophic-dynamics approximation should be taken with caution. 

I am grateful to Sergio Ramos and Fabitin Rosas for drafting the figures and to 
Sergio Jim6nez for assistance with the programming. Miguel Lavin was very helpful 
in making this a much more readable manuscript. A very stimulating correspondence 
with Drs Ettore Salusti and Benoit Cushman-Roisin is sincerely appreciated. 

Appendix A. General stability conditions 

momentum equations ( 5 )  in the form 
In order to derive the stability conditions, it is convenient to rewrite the 

ax* ab I au* --zgv*+- = 0, 
at* 

where 6 is the absolute vorticity and 

b = p+$(u2,+w~+sZ~r2) ,  (A 2) 

is the Bernoulli head. For a steady solution in the f* plane, there must exist a 
transport function Y, such that 

h u ---, ay hove=-. a l y  
aY * ax* 0 0 -  

The above equations further require that both b, and qo be functions of Y, viz. 
b, = b,( !F) and qo = db,/dY (the reader may verify that, in particular, this is true for 
the elliptical vortex solution described in $3). 
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Putting now u = uo+Su, etc. the perturbation energy is 

SE = Is dzdy[ho(uo Su+v, Sv) + b, Sh] + . . ., 

36 1 

where (. . .) denotes quadratic plus higher-order terms; clearly SE, which is conserved, 
is not sign definite. However, consider the family of integrals of motion J, which 
depend on an arbitrary function of potential vorticity q. Let 

q = qo+q+ ... 
(or exactly q = qo + qho/h) where 

For the integrand in the definition of J 

In  order to construct a pseudoenergy, E -  J, without linear terms in (Su,, Sv,, Sp) 
it is necessary that 

(which implies d!P/dq, = -F"(q,)). Assume this function is chosen, and consider now 
the quadratic terms: 

bo = F(q0) -Qo F'kl,) 

Sh'(p, - U: - w:) + 
h0 

In order for SEp to be positive for any perturbation, 

and 

must hold everywhere. 

d!P 
- z 0, 
dqo 

Now, aa explained in the main text, any flow that satisfies these conditions must 
be axisymmetric, i.e. they are not as general aa they look. If, and only if, the flow 
is axisymmetric a pseudo-angular momentum, A -  J, can also be constructed in a 
similar way. Requiring that SEp - dSAp be positive for any perturbation, conditions 
(7) and (8)  are found, where t~ is an arbitrary parameter. 

Appendix B 
In  order to find the eigensolutions of (12) first make 

U = ia(A +B) ,  

v = b(A -B) ,  

P = df* c. 

Then, introduce z=-+1- x* .Y* 
a b  
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and its conjugate Z* as independent variables, and the two parameters 

which are equivalent to a / b  and Q/f. Upon substitution in (12) we obtain 

ac ac 
az* az (L-a+ l )A+&B+a- -+&-=  0, 

ac ac 
az az* (L+a-1)B-SA+a-+S- = 0, 

where 

and A = o/o* 
is a non-dimensional eigenvalue. Write C as an nth-order polynomial of (z*, ye) in 
the form 

c = x c,, Zm-8 z*,, 

where the sum is over (0 < m < n, 0 < 8 < m). Similar polynomials are assumed for 
A and B, but with m going up to n- 1 instead of n. The equations for the coefficients 
are 

(m - 8 + 1) A,-, + ( A  + m - 28) c, + (8  + 1) B, = (m - 8 + 1) A, + (8 + 1 )  B8+1, 
a(m-8) c, + (A+m-29-2 +a) B,-&A,+ S(8 + 1) c,,, = 0, 

S(m - 8) c, + SB, + ( A  + m - 2s - a) A ,  + a(8 + 1 ) c,,, = 0. 

Here the first subscript was omitted for simplicity: it is equal to m for C, to (m- 1 )  
for A and B on the left-hand side, and to (m+ 1) for A and B on the right-hand side. 
It is understood that Y,, = 0 if 8 < 0 or 8 > m. 

Clearly, only values of m with the same parity as n enter in these equations. For 
m = n, the right-hand side vanishes identically: the equations of the highest-order 
coefficients are decoupled from the others and therefore the eigenvalues h are those 
of a real penta-diagonal (3n+ 1) x (3n+ 1) matrix. 
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